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Ob_iectives

The objective of this research is to characterize the localized corrosion and stress

corrosion crack initiation behavior of AI-Li-Cu alloy 2090, and to gain an understanding

of the role of local corrosion and occluded cell environments in the mechanisms of pitting

and initiation and early-stage propagation of stress corrosion cracks.
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Stress Corrosion in 2090: The Role of Localized Corrosion

in the Subgrain Boundary Region

R. G. Buchheit

G. E. Stoner

Department of Materials Science

Like most heat treatable aluminum alloys, localized corrosion and stress corrosion

of A1-Li-Cu alloys is strongly dependent on the nature and distribution of second phase
particles. To develop a mechanistic understanding of the role of localized corrosion in the

stress corrosion process, bulk samples of T l (A12CuLi) and a range of AI-Cu-Fe impurity

phases were prepared for electrochemical experiments. Potentiodynamic polarization and

galvanic couple experiments were performed in standard 0.6 M NaC1 and in simulated

crevice solutions to assess corrosion behavior of these particles with respect to the r,-A1
matrix.

A comparison of time to failure versus applied potential using a constant load,

smooth bar SCC test technique in CI, C1-/CrO42- and C1-/CO32- environments shows that

rapid failures are to be expected when applied potentials are more positive than the

breakaway potential (Ebr) of T_ (crack tip) but less than Ebr of a-A1 (crack walls). It is

shown that this criterion is not satisfied in aerated C1- solutions. Accordingly, SCC
resistance is good. This criterion is satisfied, however, in an alkaline isolated fissure

exposed to a CO 2 containing atmosphere. Rapid failure induced by these fissures has
recently been termed "preexposure embrittlement."

Anodic polarization shows that the corrosion behavior of T ! is relatively unaffected

in alkaline CO32- environments but the ct-A1 phase is rapidly passivated. X-ray diffraction

of crevice walls from artificial crevices suggests that passivation of a-A1 occurs as
Bayerite (AI(OH)3) imbibes solvated lithium and carbonate ions to form a

hydrotalcite-type compound [LiA12(OH)6]2 ÷ • CO32- • nil20.
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Outline

* Microstructural Heterogeneity and Localized Corrosion

* Time to Failure vs. Applied Potential in CI" and CI "/CrO_4"

* SCC in CO 2- Environments, "Pre-Exposure Embrittlement"



Centered dark field transmission electron micrograph of the subgrain
boundary region showing the precipitation of T1 on boundaries and in
subgrains.
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Corrosion Behavior in Aerated 0.6 M NaCI

Phase

G(- Ai

AI-14Cu

Ai18-Cu-5Fe

AI-24Cu-5Fe

T 1

PA 2090

Model

Material

SHT 2090

as cast

as cast

as cast

AI-26Cu-21 Li

AI-3Cu-2Li

Corrosion Potential

(mVsc e )

-720

-620

-670

-675

-1100

-720

Galvanic Couple

Current Density

(ua/cm 2 )

-0.5

-7.0

-3.0

+5OO



A. Optical micrograph of pitting associated with AI-Fe-Cu impurity
particles.

B. Optical micrograph of discontinuous subgrain boundary pitting
associated with T1 precipitated on subgrain boundaries.
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A. Scanning electron micrograph of the fracture surface of a 2090

tensile specimen subjected to a time to failure experiment at 55 %

ofthe S-T yield strength in 0.1 M NaCI + 0.1 M Na 2CRO4 at an

applied potential greater than EbrOf T 1.

B. Scanning electron micrograph from the rim of the failure initiating

pit.



C. Scanning electron micrograph of the SCC propagation region 200
micrometers below the base of the pit.

D. Scanning electron micrograph of the tensile overload region.
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Time to Failure vs. Applied Potential

in Aerated 0.6 M NaCI

Applied Potential

(mVsc e )

-720 (Ecorr)
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(days)
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A. Scanning electron micrograph of the fracture surface of a 2090
specimen loaded to 55% of the S-Tyield and immersed in 0.6 M
NaCIsolution under free corrosion conditions for 7 days then
removed from solution and pulled to fracture in air.

B. Scanning electron micrograph of the failure initiating pit.



C. Scanning electron micrograph of the overload region directly below
the base of the pit.



Necessary Conditions for Rapid SCC Failure

Appear to be:

* _ - AI passive

* T1 transpassive

(below Ebr)

(above Ebr)



Pre-Exposure Embrittlement

h
Load Specimen to |

55% of S-T yield J

l

Remove to lab air:

Failure in <24 h

I immerse in aerated 0.6 M
NaCI for 7 days under

free corrosion conditions

Remove to CO2-free air:

No failures

* Alloy 8090, Holroyd, et al. (1987)

* Alloy 2090, Moran (1989)



Holroyd, et al. Moran

Aerated 0.6 M NaCI too

aggressive towards _Continuous SGB_
subgrain boundaries _on in pits.j

Remove from i-
......................... solution.......... _;

("Fissures become alkaline)

l
rAbsorption of CO2" ]

pH falls |

LiAIO 2 precipitates_

CC initiates and_

ropagates_

rLem_ovai+ and CO2-upon 1
I

i2CO3 precipitates _

pH 10 /

0 -1: /
•144 M reqd._

CC initiates and 1
gates



Corrosion Behavior in CI - and CI -/CO 2-

0.6 M NaCI

pH = 7-8

0.6 M NaCI +

0.1 M Li 2CO 3

pH = 10

phase

,_-AI

I"1

_,-A1

ipass

(ua/cm 2 )

1.0

200

0.75

55O

Ebr

(mVsc e)

-690

-720

-59O

-720

> Rapid Failure
Window

-590 mV > -720 mV
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A. Scanning electron micrograph of the film that forms in the SCC

region of a 2090 tensile specimen where the specimen is immersed

in aerated 0.6 M NaCI for 7 days then removed to CO 2 -free air.

B. Scanning electron micrograph of the film that forms in the SCC region

of a 2090 tensile specimen that is immersed in aerated 0.6 M NaCI

for 7 days then removed to laboratory air.
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Hydrotalcites

* Alumina Gels + Lithium Salts
-----_ (UXx)y. 2(AIOH)3. nH20

* Several anions produce isomorphous compounds

OH- CI-

* Passivating effects associated with its presence (Perrota, 1990)

* Insoluble in alkaline solutions
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Ammended Pre-Exposure Embrittlement
Mechanism

Constituent Particle Pitting-_

H + consumption in crevice increases pH

[Li + ] increases due to T1 dissolution

CO 2 is absorbed dissociates to CC_"

pH favors Bayerite formation

imbibes 2Li + CO 2" salt

is active

Rapid Failure



Summary

* In order of increasing nobility:

T1 < ,_-AI < AI-Cu-Fe

* RapidSCC ensues when:

EbrT1 > Eapplied > Bar4: - AI

* In 0.6 M NaCl, EbrT 1 = Ebr,_ - AI
rapid SCC criterion is not satified

* In isolated fissures, rapid SCC criterion is
satisfied

* _' - AI is passivated by a hydrotalcite-type

compound
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Background

Crevice coupled to Bulk Solution
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Objectives

Separate and identify the roles of:

• AI3+

• Li+

• Cu2+

hydrolysis

* an external cathode



Approach

Simulated crevice technique

* in situ measurement

* avoid the size constraint associated
with real crevices

Measure pH versus Time for:

50 pm

T
1.50 cm

cm

Materials Environments

99.99 AI
SHT AI-3Li
SHT A1-3Cu
SHT A1-3Cu-2Li

Aerated Bulk Solution
Isolated Crevice



Approach

Interpret steady state pH using Distribution Diagrams for
monomerlc hydrolysis products and knowledge of where electrochemical
reduction reactions are occurring.

Monomeric Hydrolysis

xMZ+ + YH20 '_ Mx(OH)y(XZ'Y) + + yH +

* Rapid 105 < k < 1010 moles-lsec-1

* Reversible

* An equilibrium treatment is applicable



Reactions Considered

Aluminum

AI 3+ + H20 ,_

A13+ + 2H,_O

AIOH 2+ + H +

AI(OH) 2 + + 2H +

AI 3+ + 3H20 _ AI(OH)3 + 3H +

AI 3 + + 4H20 .,.* AI(OH)4- + 4H +

Lithium

Li + + H20 _ LiOH+ H +

Copper

Cu 2+ + H20 '_, CuOH + + H +

Cu 2+ + 2H20 ,,. Cu(OH)2 + 2H +

Cu 2+ + 3H20 ._.

Cu 2+ + 4H20 4+

Cu 2+ + H20

Cu(OH)3" + 3H +

Cu(OH)42- + 4H +

1/2Cu2(OH)22+ + H +

Electrochemical Reactions

M --* M n + + ne"

02+ 4H + + 4e" .... 2H20

2H + +2e" --* H 2

H20 + e" .-* H + OH"

-log Kxy

4.97

9.3

15.0

23.0

13.86

8.0

17.3

27.8

39.6

10.36

internal

external

internal

internal



Construction of Distribution Diagrams

Formation Quotients (Baes and Mesmer, 1986.)

logQxy = logKxy + aI1/2 + bI

(1 + I1/2)

I = x z i2[i]

2

Mass Action Expressions

Qll = [A1OH2+][ H+]

[A13+ ]

FA1OH 2 + = [A1OH 2 + ]

x [species]
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Results for Pure Aluminum
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Results for Aluminum
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internal

internal

Hydrolysis Reactions:

AI3+ + H20 _ AIOH 2+ +H +

Aj3+ + 2H20 "-* AI(OH) 2+ +2H +
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Results for SHT AI-3Li
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Results for SHT AI-3Li
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Results for SHT AI-3Cu
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I_olated Crevice

Electrochemical Reactions:

Cu _ Cu 2 + + 2e" internal

2H + + 2e" -+ H 2 internal

dissolution of 1 Cu atom form the alloy consumes 2 H +.

Copper oxidation can not discharge H +.

In RRDE experiments with AI2Cu at potentials below

E R Cu/Cu 2+, copper deposits have been observed.

(Mazurkiewicz and Piotrowski, 1983).

[Cu 2 +] > 10-9 M not detected in these crevices.
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Results for SHT 2090
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Consistent with Al 3 + + H20 ._, A1OH 2 + + H + equilibrium.

Isolated Crevice

Li "-+ Li + + e"

H + + e" _ 1/2H 2
assisted by elemental Cu on walls

Li + +H20 _ LiOH+H +

replaces H + and inhibits further pH increase.
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Summary

* In aerated bulk solutions, crevice pH is consistent with:

A13+ + H20 o A1OH 2+ +H +

dependent on reduction kinetics at the external cathode.

* AI(OH)-, +/AI(OH)4- system point defines the
pH in pffre A1, isolated crevices.

*Li --* Li + +e"

H + +e" --. 1/2H 2 I
gives an alkaline crevice

Li + + H20 o LiOH+ H + replacesH +

" Elemental Cu on walls of crevices may assist in generating
alkaline crevice solutions.


